Development of a Python code for Trajectory Surface Hopping

on Ab Initio Potential Energy Surfaces

Chakradhar Rangi

August 17, 2020

Chakradhar Rangi TSH



© Motivation

© Non Adiabatic Dynamics

© Trajectory Surface Hopping(TSH)
@ Algorithm of TSH

© Computational Details

Chakradhar Rangi TSH



© Motivation

Chakradhar Rangi TSH



Why should you care?

You should listen to this talk if followings things interest you:
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A good old friend!

@ Task at hand: Solve the Schrodinger equation for a molecular system.
N,
N LN N
Hmol = ; Mva + Hel

o First line of attack: The Born-Oppenheimer approximation
@ Physical motivation: Mass of nuclei ~ (10® — 10°) X Mass of electron
@ This helps to decouple the electronic and nuclear motion.

Hep(r;R) = Ea(R)¥(r; R)
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Figure: PES for H, O!

!Image credits: By AimNature - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29213158
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Failure of Born-Oppenheimer Approximation: Non-Adiabatic Dynamics

Adiabatic Dynamics

The nuclear motion is propagated on a single Potential energy surface(PES).

When does the approximation breakdown? Quick recap of Adiabatic
theorem:

Theorem

A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian's spectrum.

H(t) [¢n(t)) = En(t) [¢n(2))
We attempt to construct the wavefunction through the ansatz

(W(t)) =22, en(t) [a(t))

inée = (B — i (wulde) o) - ’hz EH—)nEk

Chakradhar Rangi TSH



© Non Adiabatic Dynamics

Chakradhar Rangi TSH



Non Adiabatic Dynamics

@ We need to consider multiple Potential Energy Surfaces or equivalently,
the whole instantaneous eigenbasis for an exact formalism of NAD.

@ Indeed, one of the quantum mechanical approaches is the Bohmian
Non-adiabatic Dynamics which considers the Born-Huang ansatz:

W(r,R, t) ZQk (R, t)Yu(r; R) (0.1)

@ However, we encounter practical issues for large molecules.

@ We tackle this problem with semi-classical approaches: Nuclei are treated
classically and propagated through Molecular Dynamics simulations.

@ Pro: We can simulate the nuclei with full dimensionality(Control the
computational cost).

@ Con: Accuracy - We loose some quantum mechanical effects.
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Semi Classical Approaches

Two such methods exist:
@ Ehrenfest Dynamics: Mean field PES approach
@ Trajectory Surface Hopping: Single PES approach subjected to switch/hop
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Figure: Ehrenfest Dynamics Figure: Trajectory Surface Hopping
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Trajectory Surface Hopping

Hypothesis

The dynamics of nuclear wave-packet through a PES branching region can be
approximated by an ensemble of independent classical trajectories distributed
stochastically amongst the branching surfaces.

e Trajectory: R = R(t) = (Ri(t), R2(t), ..., Rw,(t))

Electronic Propagation:

v(r,R,t) = Z ¢ (t)y;(r; R) (0.1)

j

Time Dependent Schrodinger Equation:
ih%\ua(r, R, t) = Ha(r, R)W*(r,R, t) (0.2)
ihég (t) = ¢ (t)Ex(R) — ihz ¢ (t)R™ - df; (0.3)

J
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TSH(continued)

Non-adiabatic Coupling Vector

dig = (Yx(r; R)| VR [¢5(r; R)) (0.4)

Nuclear Propagation: The nuclei/trajectories are propagated by the gradient
of the current PES

Nuclei equation of motion

MR, = —V,E{'(R) (0.5)

Stochastic algorithm: Consider a two level system and N trajectories.
o Let pi; & ph, be the populations of state 1 & 2 respectively at time t; = t

@ after an infinitesimal time At, the populations change pi; — p11 and
Pa2 — p22.(Assume p11 < piy)

Respective trajectories at t1 =t & th = t + At

Ni=puN N = phN
Ny = puN N> = pa N
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TSH(continued)

Probability that one of the initial N; trajectories would switch

11— N D22 A
Pswitch(]. — 2) = (pll 7 pll) ~ p22, t (06)
pulN P11

Probability of switching between two surfaces

2Re(Cj*(t)Ck(t)R . dk/)At

P(j_,k)(t) = max |0, (0.7)
Pij
Stochastic algorithm
k—1 K
D Pism(t) <% <D Phnm(t) (0.8)
m=1 m=1
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Algorithm

Step 1: Initialize the positions and momenta for nuclear trajectory and
also initiate the electronic density matrix elements. Usually, the phase
space points are sampled using Wigner distribution for a Harmonic
Oscillator or from a molecular dynamic simulation.

Step 2: Diagonalize the electronic Hamiltonian to obtain potential energy
surface and compute its gradients to obtain the forces.

HAaV(r;R) = E4(R)V(r;R) (0.1)

Step 3: Propagate the nuclear trajectories using for a small time step A
using velocity-verlet scheme.

MR, = —V,E{'(R) (0.2)

Nuclear time step = A and electronic time step = dt
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Algorithm

Velocity Verlet Scheme

R(t+A) = R(8) + v(t)A + 2a(1)2? (0.3)

1
v(t+A) = v(t) + S[a(t) +a(t + A)]A (0.4)
Step 4: Obtain Non-Adiabatic Coupling's using auxiliary Many-body

wavefunction. Further interpolate and extrapolate to obtain NACs at
intermediate steps.

ok = dij - R= (¢u(r; R)|d/dt|¢;(r; R)) (0.5)

Step 5: Integrate electronic coefficients to obtain the time dependent
coefficients at a smaller time step dt using Runge-Kutta method.

ineg(t) = ¢ (t)Ex(R thc t)R™ - dy; (0.6)
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Algorithm

Step 6: Evaluate the switching probability and decide the hop according
to the stochastic algorithm.

k—1 k
D Piam(t) <ve <Y Pysm(t) (0.8)

Step 7: If the hop is successful, change the driving surface and re-adjust
the momentum to conserve the energy or continue on the same surface
otherwise, until the stopping criterion is met in any case.

Step 8: Repeat the entire procedure for a different trajectory.
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Initial Sampling

@ The equations of motion(EOM) associated with trajectories are Newton's
second law.

@ We require a set of initial positions and momenta to integrate these EOM.

@ In other words, we need to initialise each trajectory as a pure state in
phase space.

The ground state phase space(Temperature T) of a molecule with Natoms can
be sampled through a harmonic oscillator Wigner distribution:

1 3Natoms —6

2 2
—4qi —Pi
Wp(a, pq) = O [ ae (202 ) exp (202 ) (0.1)

ey ai pi

where
o2 — h o2 — hpiw;
I e piwi Pi 200 (02)
«; = tanh o .
T 2kg T

@ The notion of a Wigner distribution arises in the context of Weyl
quantization.
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Sampling from a Multivariate Gaussian Distribution

Suppose we have a two independent Gaussian random variables:

1 X2 4 2
fxry(x:y) = 5-exp(==—55—) (0.3)
Let us introduce two random polar variables R and E on the XY plane:

X = rcose y =rsine (0.4)

By requiring fix vy(x, y)dxdy = f(r,g)(r,€)drde, we get
fir.)(r,€) = QMQ exp(— ) (0.5)

r r2 1
= ;exp(—ﬁ)g (0.6)
= fr(r)fe(e) (0.7)

We can draw samples from fg(r) by finding the CDF, F(R), and then solving

F(R) =:
R = o+/—2logy E =27% (0.8)
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Initial conditions(continued)

Once we sample gj, pi from the Wigner distribution as described above, we can
generate the initial conditions as follows:

3Nat0ms_6
Qgen - Qoptimized + Z giej (09)
i=1
3Natom576
Pen = > pie; (0.10)

i=1

where {e;} are the displacement of vibrational modes only.
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Non Adiabatic Coupling

The non-adiabatic coupling vector is given by:

dyj = (6x(r: R)| Vi [45(r: R)) (0.11)

Evaluating the above equation is computational expensive and we will use the
coupling term instead:

oy = dij - R = (4i(r; R)|d/dt[1);(r; R)) (0.12)

Using finite difference and linear interpolation, it can be showed that:

7y (R (14 53)) = 55 (EREDR(E + 2)
~ (k(mR(E+ A R()) (013)

However, we do not have access to Many body wavefunctions. We will use the
"auxiliary’ many electron wavefunction to calculate the matrix elements:

[ R() =3 ¢

oS (r: (1)) (0.14)
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NAC(continued)

The spin adapted configurational state functions are given by:

F 1 r .
537 R()) = 75 (|5 RO ) + 0550 R(1) ) (0.15)
Substituting (0.14) and (0.15) in (0.13), we get:

(S (i R(e)[ 0L (rR(e+ 4)) = 3 >" Crc,

a,r a’,r’

[<¢;§(r R(t)) ’¢’B(r R(t+A))>

x 1
2
+<¢g§(r; R(t))‘d)’ (rR(t+ A)) >

+(®5(rR(1)) ’cb’ﬁ(r R(t +4)))

+ (OB RE)|OLERE+A))]  (0.16)
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NAC(continued)

Although, the above equation looks complex, they can be broken down into
determinant of overlap matrices between KS orbitals:

(®L(rR(1)

78 (nR(t+ A))> = det

(Gile) o (oildl) o (DU /leleh) o (Gilel) o (i)

(Galdt) o (Balol) o (Galdl) | | (@rdel) o (edel) e (Brleh)

Galdl) o (Baldl) o (Galdh)) \(@aldh) o (Galdl) o (Gnldly)
(0.17)

where ¢ and ¢’ represents KS orbitals at time t and t + A respectively.
Furthermore, these overlaps can be expressed in terms of overlaps between
atomic basis functions |gi(R)) at the corresponding time steps

(¢a(R(2)) |6 (R(t + A))) = > D;iDurm (&1(R(t))|En(R(t + A)))  (0.18)

I,m

Chakradhar Rangi TSH



	Motivation
	Non Adiabatic Dynamics
	Trajectory Surface Hopping(TSH)
	Algorithm of TSH
	Computational Details

