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Why should you care?

You should listen to this talk if followings things interest you:

Figure: Photo stability of purine
Figure: Population transfer in
LH2 complex

Figure: Non-radiative transitions Figure: Photochemical pathways
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A good old friend!

Task at hand: Solve the Schrödinger equation for a molecular system.

Ĥmol =

Nn∑
α

−~2

2Mα
∇2
α + Ĥel

First line of attack: The Born-Oppenheimer approximation
Physical motivation: Mass of nuclei ∼ (103 − 105) X Mass of electron
This helps to decouple the electronic and nuclear motion.

Ĥelψ(r;R) = Eel(R)ψ(r;R)

Figure: PES for H2O1

1Image credits: By AimNature - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29213158
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Failure of Born-Oppenheimer Approximation: Non-Adiabatic Dynamics

Adiabatic Dynamics

The nuclear motion is propagated on a single Potential energy surface(PES).

When does the approximation breakdown? Quick recap of Adiabatic
theorem:

Theorem

A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum.

H(t) |ψn(t)〉 = En(t) |ψn(t)〉

We attempt to construct the wavefunction through the ansatz
|Ψ(t)〉 =

∑
n cn(t) |ψn(t)〉

i~ċk =
(
Ek − i~

〈
ψk

∣∣∣ψ̇k

〉
ck
)
− i~

∑
n 6=k

(Ḣ)nk
En − Ek

cn
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Non Adiabatic Dynamics

We need to consider multiple Potential Energy Surfaces or equivalently,
the whole instantaneous eigenbasis for an exact formalism of NAD.

Indeed, one of the quantum mechanical approaches is the Bohmian
Non-adiabatic Dynamics which considers the Born-Huang ansatz:

Ψ(r,R, t) =
∑
k

Ωk(R, t)ψk(r;R) (0.1)

However, we encounter practical issues for large molecules.

We tackle this problem with semi-classical approaches: Nuclei are treated
classically and propagated through Molecular Dynamics simulations.

Pro: We can simulate the nuclei with full dimensionality(Control the
computational cost).

Con: Accuracy - We loose some quantum mechanical effects.
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Semi Classical Approaches

Two such methods exist:

1 Ehrenfest Dynamics: Mean field PES approach

2 Trajectory Surface Hopping: Single PES approach subjected to switch/hop
surfaces

Figure: Ehrenfest Dynamics Figure: Trajectory Surface Hopping
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Trajectory Surface Hopping

Hypothesis

The dynamics of nuclear wave-packet through a PES branching region can be
approximated by an ensemble of independent classical trajectories distributed
stochastically amongst the branching surfaces.

Trajectory: R = R(t) = (R1(t),R2(t), ...,RNn (t))

Electronic Propagation:

Ψα(r,R, t) =
∑
j

cαj (t)ψj(r;R) (0.1)

Time Dependent Schrodinger Equation:

i~ ∂
∂t

Ψα(r,R, t) = Ĥel(r,R)Ψα(r,R, t) (0.2)

Time-dependent coefficient propagation

i~ċαk (t) = cαk (t)Ek(R)− i~
∑
j

cαj (t)Ṙα · dαkj (0.3)
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TSH(continued)

Non-adiabatic Coupling Vector

dkj = 〈ψk(r;R)|∇R |ψj(r;R)〉 (0.4)

Nuclear Propagation: The nuclei/trajectories are propagated by the gradient
of the current PES

Nuclei equation of motion

MI R̈I = −∇IE
el
k (R) (0.5)

Stochastic algorithm: Consider a two level system and N trajectories.

Let ρ′11 & ρ′22 be the populations of state 1 & 2 respectively at time t1 = t

after an infinitesimal time ∆t, the populations change ρ′11 → ρ11 and
ρ′22 → ρ22.(Assume ρ11 < ρ′11)

Respective trajectories at t1 = t & t2 = t + ∆t

N ′1 = ρ′11N N ′2 = ρ′22N

N1 = ρ11N N2 = ρ22N
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TSH(continued)

Probability that one of the initial N1 trajectories would switch

Pswitch(1→ 2) =
(ρ′11 − ρ11)N

ρ′11N
≈ ρ̇22∆t

ρ′11

(0.6)

Probability of switching between two surfaces

P(j→k)(t) = max

[
0,

2Re(c∗j (t)ck(t)Ṙ · dkl)∆t

ρjj

]
(0.7)

Stochastic algorithm

k−1∑
m=1

P(j→m)(t) < γt ≤
k∑

m=1

P(j→m)(t) (0.8)
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Algorithm

Step 1: Initialize the positions and momenta for nuclear trajectory and
also initiate the electronic density matrix elements. Usually, the phase
space points are sampled using Wigner distribution for a Harmonic
Oscillator or from a molecular dynamic simulation.

Step 2: Diagonalize the electronic Hamiltonian to obtain potential energy
surface and compute its gradients to obtain the forces.

ĤelΨ(r;R) = Eel(R)Ψ(r;R) (0.1)

Step 3: Propagate the nuclear trajectories using for a small time step ∆
using velocity-verlet scheme.

MI R̈I = −∇IE
el
k (R) (0.2)

Nuclear time step ≡ ∆ and electronic time step ≡ dt
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Algorithm

Velocity Verlet Scheme

R(t + ∆) = R(t) + v(t)∆ +
1

2
a(t)∆2 (0.3)

v(t + ∆) = v(t) +
1

2
[a(t) + a(t + ∆)]∆ (0.4)

Step 4: Obtain Non-Adiabatic Coupling’s using auxiliary Many-body
wavefunction. Further interpolate and extrapolate to obtain NACs at
intermediate steps.

σkj ≡ dkj · Ṙ = 〈ψk(r;R)|d/dt|ψj(r;R)〉 (0.5)

Step 5: Integrate electronic coefficients to obtain the time dependent
coefficients at a smaller time step dt using Runge-Kutta method.

i~ċαk (t) = cαk (t)Ek(R)− i~
∑
j

cαj (t)Ṙα · dαkj (0.6)
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Algorithm

Step 6: Evaluate the switching probability and decide the hop according
to the stochastic algorithm.

P(j→k)(∆) = −2

∫ t+∆

t

dt
Re
{
ρ∗kj(t)σkj(t)

}
ρjj

(0.7)

k−1∑
m=1

P(j→m)(t) < γt ≤
k∑

m=1

P(j→m)(t) (0.8)

Step 7: If the hop is successful, change the driving surface and re-adjust
the momentum to conserve the energy or continue on the same surface
otherwise, until the stopping criterion is met in any case.

Step 8: Repeat the entire procedure for a different trajectory.
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Initial Sampling

The equations of motion(EOM) associated with trajectories are Newton’s
second law.

We require a set of initial positions and momenta to integrate these EOM.

In other words, we need to initialise each trajectory as a pure state in
phase space.

The ground state phase space(Temperature T) of a molecule with Natoms can
be sampled through a harmonic oscillator Wigner distribution:

Wρ̂(q, pq) =
1

(π~)3Natoms−6

3Natoms−6∏
i=1

αiexp

(
−q2

i

2σ2
qi

)
exp

(
−p2

i

2σ2
pi

)
(0.1)

where

σ2
qi =

~
2αiµiωi

σ2
pi =

~µiωi

2αi

αi = tanh

(
~ωi

2kBT

) (0.2)

The notion of a Wigner distribution arises in the context of Weyl
quantization.
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Sampling from a Multivariate Gaussian Distribution

Suppose we have a two independent Gaussian random variables:

f(X ,Y )(x , y) =
1

2π
exp(−x2 + y 2

2σ2
) (0.3)

Let us introduce two random polar variables R and E on the X,Y plane:

x = r cos ε y = r sin ε (0.4)

By requiring f(X ,Y )(x , y)dxdy = f(R,E)(r , ε)drdε, we get

f(R,E)(r , ε) =
r

2πσ2
exp(− r 2

2σ2
) (0.5)

=
r

σ2
exp(− r 2

2σ2
)

1

2π
(0.6)

= fR(r)fE (ε) (0.7)

We can draw samples from fR(r) by finding the CDF, F (R), and then solving
F (R) = γ:

R = σ
√
−2logγ E = 2πγ̄ (0.8)
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Initial conditions(continued)

Once we sample qi , pi from the Wigner distribution as described above, we can
generate the initial conditions as follows:

Qgen = Qoptimized +

3Natoms−6∑
i=1

qiei (0.9)

Pgen =

3Natoms−6∑
i=1

piei (0.10)

where {ei} are the displacement of vibrational modes only.
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Non Adiabatic Coupling

The non-adiabatic coupling vector is given by:

dkj = 〈ψk(r;R)|∇R |ψj(r;R)〉 (0.11)

Evaluating the above equation is computational expensive and we will use the
coupling term instead:

σkj ≡ dkj · Ṙ = 〈ψk(r;R)|d/dt|ψj(r;R)〉 (0.12)

Using finite difference and linear interpolation, it can be showed that:

σkj

(
R

(
t +

∆

2

))
≈ 1

2∆
(〈ψk(r;R(t))|ψj(r;R(t + ∆))〉

− 〈ψk(r;R(t + ∆))|ψj(r;R(t))〉) (0.13)

However, we do not have access to Many body wavefunctions. We will use the
’auxiliary’ many electron wavefunction to calculate the matrix elements:

|ψj(r;R(t))〉 =
∑
a,r

C j
ar

∣∣∣ΦCSF
a,r (r;R(t))

〉
(0.14)
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NAC(continued)

The spin adapted configurational state functions are given by:∣∣∣ΦCSF
a,r (r;R(t))

〉
=

1√
2

(∣∣∣Φrβ
aα(r;R(t))

〉
+
∣∣Φrα

aβ(r;R(t))
〉)

(0.15)

Substituting (0.14) and (0.15) in (0.13), we get:〈
ΦCSF

a,r (r;R(t))
∣∣∣ΦCSF

a′,r′(r;R(t + ∆))
〉

=
∑
a,r

∑
a′,r′

C k∗
ar C

j
a′r′

X
1

2

[〈
Φrβ

aα(r;R(t))
∣∣∣Φr′β

a′α(r;R(t + ∆))
〉

+
〈

Φrβ
aα(r;R(t))

∣∣∣Φr′α
a′β(r;R(t + ∆))

〉
+
〈

Φrα
aβ(r;R(t))

∣∣∣Φr′β
a′α(r;R(t + ∆))

〉
+
〈

Φrα
aβ(r;R(t))

∣∣∣Φr′α
a′β(r;R(t + ∆))

〉]
(0.16)
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NAC(continued)

Although, the above equation looks complex, they can be broken down into
determinant of overlap matrices between KS orbitals:〈

Φrβ
aα(r;R(t))

∣∣∣Φr′β
a′α(r;R(t + ∆))

〉
= det

〈φ1|φ′1〉 · · · 〈φ1|φ′a′〉 · · · 〈φ1|φ′n′〉
...

...
...

〈φa|φ′1〉 · · · 〈φa|φ′a′〉 · · · 〈φa|φ′n′〉
...

...
...

〈φn|φ′1〉 · · · 〈φn|φ′a′〉 · · · 〈φn|φ′n′〉





〈φ1|φ′1〉 · · · 〈φ1|φ′r′〉 · · · 〈φ1|φ′n′〉
...

...
...

〈φr |φ′1〉 · · · 〈φr |φ′r′〉 · · · 〈φr |φ′n′〉
...

...
...

〈φn|φ′1〉 · · · 〈φn|φ′r′〉 · · · 〈φn|φ′n′〉


(0.17)

where φ and φ′ represents KS orbitals at time t and t + ∆ respectively.
Furthermore, these overlaps can be expressed in terms of overlaps between
atomic basis functions |g̃i (R)〉 at the corresponding time steps〈

φa(R(t))
∣∣φ′a′(R(t + ∆))

〉
=
∑
l,m

D∗alDa′m 〈g̃l(R(t))|g̃m(R(t + ∆))〉 (0.18)
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